Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.000
Filtrar
1.
Diagn Pathol ; 19(1): 56, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570882

RESUMO

BACKGROUND: Müllerian adenosarcoma, a rare malignancy, presents diagnostic and therapeutic challenges. In this study, we conducted an analysis of the clinicopathological characteristics of 22 adenosarcomas, with a particular focus on screening for DICER1 hot mutations. METHODS: The cohort consisted of patients with adenosarcoma who were registered at the West China Second Hospital between the years 2020 and June 2022. Sanger sequencing was employed to screen for somatic Hotspot mutations in the RNase IIIb domain of DICER1 in the 22 adenosarcomas. RESULTS: Only one patient exhibited a DICER1 mutation that was not a DICER1 Hotspot mutation. Among the 22 patients, all underwent total hysterectomy with bilateral salpingo-oophorectomy, and 14 out of these 22 patients received adjuvant treatment. CONCLUSION: In summary, our study of 22 Müllerian adenosarcomas focused on the clinicopathological features and the presence of DICER1 Hotspot mutations. Although our findings did not reveal any DICER1 mutations in the studied samples, this negative result provides valuable information for the field by narrowing down the genetic landscape of adenosarcomas and highlighting the need for further research into alternative molecular pathways driving this malignancy.


Assuntos
Adenossarcoma , Feminino , Humanos , Adenossarcoma/genética , Adenossarcoma/patologia , Mutação , China , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
3.
Mol Cell ; 84(6): 1158-1172.e6, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38447581

RESUMO

MicroRNA (miRNA) maturation is critically dependent on structural features of primary transcripts (pri-miRNAs). However, the scarcity of determined pri-miRNA structures has limited our understanding of miRNA maturation. Here, we employed selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), a high-throughput RNA structure probing method, to unravel the secondary structures of 476 high-confidence human pri-miRNAs. Our SHAPE-based structures diverge substantially from those inferred solely from computation, particularly in the apical loop and basal segments, underlining the need for experimental data in RNA structure prediction. By comparing the structures with high-throughput processing data, we determined the optimal structural features of pri-miRNAs. The sequence determinants are influenced substantially by their structural contexts. Moreover, we identified an element termed the bulged GWG motif (bGWG) with a 3' bulge in the lower stem, which promotes processing. Our structure-function mapping better annotates the determinants of pri-miRNA processing and offers practical implications for designing small hairpin RNAs and predicting the impacts of miRNA mutations.


Assuntos
MicroRNAs , Processamento Pós-Transcricional do RNA , Humanos , MicroRNAs/metabolismo , RNA Interferente Pequeno , Ribonuclease III/genética
4.
Discov Med ; 36(181): 234-247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409829

RESUMO

Sertoli-Leydig cell tumours (SLCTs) represent a subset of mixed sex cord-stromal tumours (SCSTs), a rare form of non-epithelial ovarian tumours comprising less than 7% of malignant cases. Among other types of SCSTs, SLCTs are one of the more prevalent types observed in young adults. SLCTs are classified into 5 histologic categories based on differentiation levels and histological variants. Diverse chromosomal and genetic mutations have been identified in SLCTs, with the most well-studied being the genetic mutations observed in the Dicer 1, Ribonuclease III (DICER1) and the Forkhead Box L2 (FOXL2) genes. These mutations have important clinical implications and their mechanisms are discussed. Particularly, this review emphasizes the correlation between tumour differentiation, mutation status and virilization. Current common methods and difficulties in the clinical diagnosis of SLCTs are also considered, and the usefulness of immunohistochemistry is highlighted. Patient stratification for treatment is done according to the patient's age, stage of disease and prognostic factors. The gold standard of treatment is surgical resection and adjuvant chemotherapy is administered based on the risk of recurrence. The management of recurrence remains a major challenge. Apart from recurrence, there is also a risk of the development of a metachronous tumour, especially in patients with DICER1 syndrome. Hence, the diagnosis of a SLCT has important implications for genetic testing and patient surveillance even if the management of the tumour is successful. This scoping review serves to consolidate current knowledge on SLCTs and advocates for future research advancements to refine diagnosis, management, and prognosis.


Assuntos
Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Tumores do Estroma Gonadal e dos Cordões Sexuais , Feminino , Adulto Jovem , Masculino , Humanos , Tumor de Células de Sertoli-Leydig/diagnóstico , Tumor de Células de Sertoli-Leydig/genética , Tumor de Células de Sertoli-Leydig/terapia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Tumores do Estroma Gonadal e dos Cordões Sexuais/diagnóstico , Tumores do Estroma Gonadal e dos Cordões Sexuais/genética , Tumores do Estroma Gonadal e dos Cordões Sexuais/patologia , Mutação , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
5.
Am J Surg Pathol ; 48(5): 588-595, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38357912

RESUMO

Nasal chondromesenchymal hamartoma (NCMH) is a rare benign polypoid mesenchymal tumor arising in the nasal cavity and/or paranasal sinuses. Recognizing these sporadic, rare lesions is crucial, as surgical complete removal of the mass is the common treatment approach. This retrospective study analyzed the demographics, symptoms, and imaging data of 9 patients diagnosed with NCMH between January 2017 and June 2023, possibly representing the largest single-center adult case cohort to date. Diagnostic techniques included nasal endoscopy, CT/MRI scan, immunohistological studies, and morphologic comparisons. Pathologic specimens were subjected to Sanger sequencing of exons 24 and 25 of DICER1. The average age of 9 cases was 24.4 years, and the oldest was 55 years. Four of the patients were children, ranging from 1 year old to 11 years old, with an average of 4.5 years. Nasal congestion is the most common registered symptom. Endoscopic findings showed that most patients had smooth pink neoplasms or polypoid masses in the nasal meatus. Radiologic scanning revealed soft-tissue density masses that occupied the nasal cavity. Histologically, the characteristic structure of NCMHs is immature cellular cartilage nodules and mature cartilage nodules distributed in a loose mucoid matrix. Five of the 9 patients had somatic DICER1 missense mutations. Four of the patients with DICER1-mutated NCMH exhibited a p.E1813 missense hotspot mutation. We also report a case of a rare p.P1836H missense mutation. The detected DICER1 somatic mutations provide compelling evidence of an association with the DICER1 tumor family. We emphasize the importance of pathologic consultation and the need for pathologists to accumulate experience in NCMH diagnosis to avoid misdiagnosis.


Assuntos
Hamartoma , Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Doenças Nasais , Criança , Lactente , Adulto , Humanos , Adulto Jovem , Estudos Retrospectivos , Doenças Nasais/genética , Doenças Nasais/diagnóstico , Doenças Nasais/patologia , Cavidade Nasal/patologia , Hamartoma/genética , Hamartoma/patologia , Ribonuclease III/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/patologia , Mutação , RNA Helicases DEAD-box/genética
6.
Arch Endocrinol Metab ; 68: e230030, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330293

RESUMO

Objective: Mutations in DICER1 are found in differentiated thyroid carcinoma (DTC) and in multinodular goiter (MNG) at a younger age with other tumors, which characterizes DICER1 syndrome. DICER1 is one driver to DTC; however, it is also found in benign nodules. We speculated that patients with mutations in DICER1 may present long-lasting MNG. Our aim was to investigate the frequency of DICER1 variants in patients with MNG. Subjects and methods: Patients who submitted to total thyroidectomy due to large MNG with symptoms were evaluated. DICER1 hotspots were sequenced from thyroid nodule samples. To confirm somatic mutation, DNA from peripheral blood was also analyzed. Results: Among 715 patients, 154 were evaluated with 56.2 ± 12.3 years old (28-79) and the thyroid volume was 115.7 ± 108 mL (16.2-730). We found 11% with six DICER1 variations in a homo or heterozygous state. Only rs12018992 was a somatic DICER1 variant. All remaining variants were synonymous and likely benign, according to the ClinVar database. The rs12018992 was previously described in an adolescent with DTC, measuring 13 mm. There were no significant differences according to gender, familial history of goiter, age, thyroid volume, TSH and TI-RADS classification between DICER1 carriers. Free T4 were lower in patients with DICER1 polymorphisms (13.77 ± 1.8 vs. 15.44 ± 2.4 pmol/L, p = 0.008), regardless of TSH levels. Conclusion: We conclude that germline DICER1 variants can be found in 11% of large goiters but no second-hit somatic mutation was found. DICER1 is one driver to thyroid lesion and a second-hit event seems unnecessary in the MNG development.


Assuntos
Adenocarcinoma , RNA Helicases DEAD-box , Ribonuclease III , Neoplasias da Glândula Tireoide , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/genética , RNA Helicases DEAD-box/genética , Bócio Nodular/genética , Bócio Nodular/diagnóstico , Prevalência , Ribonuclease III/genética , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Tireotropina
7.
Sci Total Environ ; 922: 171237, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423337

RESUMO

Arsenic (As), a common environmental pollutant, has become a hot topic in recent years due to its potentially harmful effects. Liver damage being a central clinical feature of chronic arsenic poisoning. However, the underlying mechanisms remain unclear. We demonstrated that arsenic can lead to oxidative stress in the liver and result in structural and functional liver damage, significantly correlated with the expression of AUF1, Dicer1, and miR-155 in the liver. Interestingly, knockdown AUF1 promoted the up-regulatory effects of arsenic on Dicer1 and miR-155 and the inhibitory effects on SOD1, which exacerbated oxidative damage in rat liver. However, overexpression of AUF1 reversed the up-regulatory effects of arsenic on Dicer1 and miR-155, restored arsenic-induced SOD1 depletion, and attenuated liver oxidative stress injury. Further, we verified the mechanism and targets of miR-155 in regulating SOD1 by knockdown/overexpression of miR-155 and nonsense mutant SOD1 3'UTR experiments. In conclusion, these results powerfully demonstrate that arsenic inhibits AUF1 protein expression, which in turn reduces the inhibitory effect on Dicer1 expression, which promotes miR-155 to act on the SOD1 3'UTR region after high expression, thus inhibiting SOD1 protein expression and enzyme activity, and inducing liver injury. This finding provides a new perspective for the mechanism research and targeted prevention of arsenic poisoning, as well as scientific evidence for formulating strategies to prevent and control environmental arsenic pollution.


Assuntos
Intoxicação por Arsênico , Arsênio , Fígado , MicroRNAs , Animais , Ratos , Regiões 3' não Traduzidas , Arsênio/toxicidade , Intoxicação por Arsênico/prevenção & controle , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease III/farmacologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia
9.
J Pediatr Surg ; 59(5): 975-980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246817

RESUMO

PURPOSE: Molecular genetic testing in conjunction with cytopathology may improve prediction of malignancy in thyroid nodules, particularly those with indeterminate cytology (Bethesda III/IV). Though now commonplace in adults, pediatric data are limited. This study examines molecular genetics of pediatric nodules with correlation to cytologic and histologic classification at time of surgery and the distribution of mutations. METHODS: Retrospective chart review of 164 patients <22 years who underwent surgical resection of a thyroid nodule between 2002 and 2020 with molecular testing on fine-needle aspiration biopsy (FNA) or final histopathology. RESULTS: 85 (52 %) of 164 patients undergoing thyroid resection had available molecular genetic testing. BRAF V600E testing was performed on the FNA samples of 73 (86 %) patients and on 15 (18 %) surgical specimens; 31 (37 %) were positive. Of the remaining 54 patients, 21 had additional mutation/fusion testing. In 17 (81 %) cases, an alternate mutation/fusion was identified including 8 gene fusions, 3 DICER1 mutations, 4 NRAS mutations, one BRAF variant, and one unknown variant. BRAF, DICER1 mutations, and gene fusions predicted malignancy. Greater than 95 % of BRAF mutations were in Bethesda V/VI lesions and associated with classic variant PTC whereas fusions and DICER1 mutations clustered in Bethesda IV nodules. Bethesda III nodules harbored BRAF and NRAS mutations. In Bethesda IV nodules, a gene fusion or DICER mutation altered the surgical decision-making (upfront thyroidectomy rather than lobectomy) in 70 % of nodules submitted for genetic testing. CONCLUSION: Expanded molecular genetic testing on FNA of pediatric thyroid nodules, particularly Bethesda III/IV, may improve prediction of malignancy and augment surgical decision-making. LEVEL OF EVIDENCE: III.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Adulto , Humanos , Criança , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/cirurgia , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Biologia Molecular , Ribonuclease III/genética , RNA Helicases DEAD-box
10.
J Microbiol ; 62(1): 33-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182942

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (∆rnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the ∆rnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and ∆rnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.


Assuntos
Ribonuclease III , Salmonella typhimurium , Humanos , Animais , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação Bacteriana da Expressão Gênica
11.
Pol Arch Intern Med ; 134(3)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38165228

RESUMO

INTRODUCTION: Genome sequencing technologies reveal molecular mechanisms of differentiated thyroid cancer (DTC). Unlike somatic mutation analysis from thyroidectomy samples, germline mutations showing genetic susceptibility to DTC are less understood. OBJECTIVES: The study aimed to assess the prevalence of germline mutations predisposing to DTC in a cohort of Polish individuals based on their whole genome sequencing data. PATIENTS AND METHODS: We analyzed sequencing data from 1076 unrelated individuals totaling over 1018 billion read pairs and yielding an average 35.26 × read depth per genome, released openly for academic and clinical research as the Thousand Polish Genomes database (https://1000polishgenomes.com). The list of genes chosen for further analysis was based on the review of previous studies. RESULTS: The cohort contained 104 variants located within the coding and noncoding DNA sequences of 90 genes selected by ClinVar classification as pathogenic and potentially pathogenic. The frequency of variants in the Polish cohort was compared with the frequency estimated for the non­Finnish European population obtained from the gnomAD database (gnomad.broadinstitute.org). Significant differences in variant frequency were found for the APC, ARSB, ATM, BRCA1, CHEK2, DICER1, GPD1L, INSR, KCNJ10, MYH9, PALB2, PLCB1, PLEKHG5, PTEN, RET, SEC23B, SERPINA1, SLC26A4, SMAD3, STK11, TERT, TOE1, and WRN genes. CONCLUSIONS: Even though the Polish population is genetically similar to the other European populations, there are significant differences in variant frequencies contributing to the disease development and progression, such as those in the RET, CHEK2, BRCA1, SLC26A4, or TERT genes. Further studies are needed to identify genomic variants associated directly with DTC.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Polônia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Ribonuclease III/genética , RNA Helicases DEAD-box/genética , Proteínas Nucleares/genética
12.
EMBO J ; 43(5): 806-835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287188

RESUMO

In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.


Assuntos
RNA Helicases DEAD-box , Interferon Tipo I , NF-kappa B , Infecções por Vírus de RNA , Ribonuclease III , Animais , Humanos , NF-kappa B/genética , Interferência de RNA , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Infecções por Vírus de RNA/enzimologia
13.
J Reprod Immunol ; 162: 104189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241848

RESUMO

In villous trophoblasts, DROSHA is a key ribonuclease III enzyme that processes pri-microRNAs (pri-miRNAs) into pre-miRNAs at the placenta-specific, chromosome 19 miRNA cluster (C19MC) locus. However, little is known of its other functions. We performed formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq) analysis of terminal chorionic villi to identify DROSHA-binding RNAs in villous trophoblasts. In villous trophoblasts, DROSHA predominantly generated placenta-specific C19MC pre-miRNAs, including antiviral C19MC pre-miRNAs. The fCLIP-seq analysis also identified non-miRNA transcripts with hairpin structures potentially capable of binding to DROSHA (e.g., SNORD100 and VTRNA1-1). Moreover, in vivo immunohistochemical analysis revealed DROSHA in the cytoplasm of villous trophoblasts. DROSHA was abundant in the cytoplasm of villous trophoblasts, particularly in the apical region of syncytiotrophoblast, in the full-term placenta. Furthermore, in BeWo trophoblasts infected with Sindbis virus (SINV), DROSHA translocated to the cytoplasm and recognized the genomic RNA of SINV. Therefore, in trophoblasts, DROSHA not only regulates RNA metabolism, including the biogenesis of placenta-specific miRNAs, but also recognizes viral RNAs. After SINV infection, BeWo DROSHA-binding VTRNA1-1 was significantly upregulated, and cellular VTRNA1-1 was significantly downregulated, suggesting that DROSHA soaks up VTRNA1-1 in response to viral infection. These results suggest that the DROSHA-mediated recognition of RNAs defends against viral infection in villous trophoblasts. Our data provide insight into the antiviral functions of DROSHA in villous trophoblasts of the human placenta.


Assuntos
MicroRNAs , Viroses , Humanos , Ribonuclease III/genética , Ribonuclease III/química , Ribonuclease III/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citoplasma/metabolismo , Trofoblastos/metabolismo , Antivirais
14.
Cell Mol Life Sci ; 81(1): 53, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261114

RESUMO

The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.


Assuntos
RNA Helicases DEAD-box , MicroRNAs , Ribonuclease III , Humanos , Cinética , MicroRNAs/genética , Fosfatos , Especificidade por Substrato , RNA Helicases DEAD-box/genética , Ribonuclease III/genética
15.
J Biomol Struct Dyn ; 42(2): 977-992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37051780

RESUMO

Spina Bifida (SB) and Wilm's Tumor (WT) are conditions, both associated with children. Several studies have shown that WT later develops in SB patients, which led us to elucidate common key genes and linked pathways of both conditions, aimed at their concurrent therapeutic management. For this, integrated bioinformatics analysis was employed. A comprehensive manual curation of genes identified 133 and 139 genes associated with SB and WT, respectively, which were used to construct a single protein-protein interaction (PPI) network. Topological parameters analysis of the network showed its scale-free and hierarchical nature. Centrality-based analysis of the network identified 116 hubs, of which, 6 were called the key genes attributed to being common between SB and WT besides being the hubs. Gene enrichment analysis of the 5 most essential modules, identified important biological processes and pathways possibly linking SB to WT. Additionally, miRNA-key gene-transcription factor (TF) regulatory network elucidated a few important miRNAs and TFs that regulate our key genes. In closing, we put forward TP53, DICER1, NCAM1, PAX3, PTCH1, MTHFR; hsa-mir-107, hsa-mir-137, hsa-mir-122, hsa-let-7d; and YY1, SOX4, MYC, STAT3; key genes, miRNAs and TFs, respectively, as the key regulators. Further, MD simulation studies of wild and Glu429Ala forms of MTHFR proteins showed that there is a slight change in MTHFR protein structure due to Glu429Ala polymorphism. We anticipate that the interplay of these three entities will be an interesting area of research to explore the regulatory mechanism of SB and WT and may serve as candidate target molecules to diagnose, monitor, and treat SB and WT, parallelly.Communicated by Ramaswamy H. Sarma.


Assuntos
MicroRNAs , Tumor de Wilms , Criança , Humanos , Perfilação da Expressão Gênica , MicroRNAs/genética , Biologia Computacional , Redes Reguladoras de Genes , Fatores de Transcrição SOXC/genética , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
16.
Mol Oncol ; 18(1): 170-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867415

RESUMO

Endoribonuclease DICER is an RNase III enzyme that mainly processes microRNAs in the cytoplasm but also participates in nuclear functions such as chromatin remodelling, epigenetic modification and DNA damage repair. The expression of nuclear DICER is low in most human cancers, suggesting a tight regulation mechanism that is not well understood. Here, we found that ubiquitin carboxyl-terminal hydrolase 7 (USP7), a deubiquitinase, bounded to DICER and reduced its nuclear protein level by promoting its ubiquitination and degradation through MDM2, a newly identified E3 ubiquitin-protein ligase for DICER. This USP7-MDM2-DICER axis impaired histone γ-H2AX signalling and the recruitment of DNA damage response (DDR) factors, possibly by influencing the processing of small DDR noncoding RNAs. We also showed that this negative regulation of DICER by USP7 via MDM2 was relevant to human tumours using cellular and clinical data. Our findings revealed a new way to understand the role of DICER in malignant tumour development and may offer new insights into the diagnosis, treatment and prognosis of cancers.


Assuntos
Neoplasias , Ribonuclease III , Humanos , Dano ao DNA , Reparo do DNA , Neoplasias/genética , Neoplasias/tratamento farmacológico , Proteínas Nucleares/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação
17.
Am J Surg Pathol ; 48(2): 221-229, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050371

RESUMO

Germline and somatic pathogenic variants (PVs) in DICER1 , encoding a miRNA biogenesis protein, are associated with a wide variety of highly specific pathologic entities. The lung tumors pleuropulmonary blastoma, pulmonary blastoma (PB), and well-differentiated fetal lung adenocarcinoma (WDFLAC) are all known to harbor DICER1 biallelic variants (loss of function and/or somatic hotspot missense mutations), and all share pathologic features reminiscent of the immature lung. However, the role of DICER1 PVs in non-small cell lung cancer (NSCLC) is relatively unknown. Here, we aimed to establish the spectrum of lung pathologies associated with DICER1 hotspot PVs and to compare the mutational landscape of DICER1 -mutated NSCLC with and without hotspots. We queried DNA sequencing data from 12,146 NSCLCs featuring somatic DICER1 variants. 235 (1.9%) cases harboring ≥ 1 DICER1 PV were found and 9/235 (3.8%) were DICER1 hotspot-positive cases. Histologic review of DICER1 hotspot-positive cases showed that all but one tumor were classified as within the histologic spectrum of PB/WDFLAC, whereas all the DICER1 non-hotspot double variants were classified as lung adenocarcinomas, not otherwise specified. Comparison between the mutational landscape of DICER1 hotspot-positive and hotspot-negative cases revealed a higher frequency of CTNNB1 mutations in the hotspot-positive cases (5/9 vs. 2/225; P <0.00001). We conclude that DICER1 somatic hotspots are not implicated in the most common forms of NSCLC but rather select for morphologic features of lung tumor types such as PB and WDFLAC. As a corollary, cases showing this tumor morphology should undergo testing for DICER1 variants, and if positive, genetic counseling should be considered.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Blastoma Pulmonar , Humanos , Recém-Nascido , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , MicroRNAs/genética , Blastoma Pulmonar/genética , Ribonuclease III/genética , Mutação em Linhagem Germinativa , RNA Helicases DEAD-box/genética
18.
Am J Surg Pathol ; 48(2): 194-203, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37946548

RESUMO

Sertoli-Leydig cell tumors (SLCTs) are currently classified into 3 molecular subtypes: DICER1 -mutant (younger patient age), FOXL2 -mutant, and DICER1/FOXL2 -wildtype. However, it is not clear whether all pediatric SLCTs are DICER1 -mutant molecular subtypes and whether other molecular genetic aberrations besides DICER1 are involved in the pathogenesis and prognosis of these tumors. We studied comprehensive data for 8 cases of pediatric SLCTs, including clinicopathological features, pan-cancer-targeted next-generation sequencing/OncoKids panel, and chromosomal microarray analysis, to further analyze the correlation among clinicopathological features, molecular genetic aberrations, and prognosis. The ages of the patients ranged from 4 to 16 years (median, 14 y). Seven cases were moderately differentiated, and one was poorly differentiated with heterologous mesenchymal elements. Two cases had heterologous epithelium or retiform elements. Follow-up was available for all 8 patients (median, 49.5 mo). Seven patients were alive without evidence of recurrence or metastasis, and only case 5 developed metastases (synchronous bilateral pulmonary tumors with rhabdomyosarcomatous differentiation). All 8 tumors were found to harbor somatic hotspot DICER1 mutations, and 5 patients carried germline DICER1 mutations (2 of them had the phenotype of DICER1 syndrome). Together with recent studies, the DICER1 mutation frequency is 100% in pediatric SLCTs (n=27, age≤16 y). Copy number alterations were detected in 3 tumors; the only recurrent copy number alterations was the gain of whole chromosome 6 in case 5 and case 8. This is the first report describing clinicopathological features and molecular alterations in pediatric SLCTs. Our results demonstrate that all pediatric SLCTs belong to the DICER1 -mutant molecular subtype, highlighting that somatic hotspot DICER1 mutation detection has high sensitivity (100%) for the auxiliary diagnosis of pediatric SLCTs (age ≤16 y). Some pediatric SLCTs harbor molecular genetic aberrations other than DICER1 mutation, and their significance needs further study.


Assuntos
Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Masculino , Feminino , Humanos , Criança , Adolescente , Tumor de Células de Sertoli-Leydig/genética , Tumor de Células de Sertoli-Leydig/patologia , Neoplasias Ovarianas/patologia , Mutação , Ribonuclease III/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Helicases DEAD-box/genética
19.
J Pediatr Surg ; 59(3): 459-463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989646

RESUMO

BACKGROUND: Distinguishing congenital pulmonary airway malformations (CPAMs) from pleuropulmonary blastoma (PPB) can be challenging. Previously diagnosed patients with CPAM may have been misdiagnosed and we may have missed DICER1-associated PPBs, a diagnosis with important clinical implications for patients and their families. To gain insight in potential misdiagnoses, we systematically assessed somatic DICER1 gene mutation status in an unselected, retrospective cohort of patients with a CPAM diagnosis. METHODS: In the Amsterdam University Medical Center (the Netherlands), it has been standard policy to resect CPAM lesions. We included all consecutive cases of children (age 0-18 years) with a diagnosis of CPAM between 2007 and 2017 at this center. Clinical and radiographic features were reviewed, and DICER1 gene sequencing was performed on DNA retrieved from CPAM tissue samples. RESULTS: Twenty-eight patients with a surgically removed CPAM were included. CPAM type 1 and type 2 were the most common subtypes (n = 12 and n = 13). For 21 patients a chest CT scan was available for reassessment by two pediatric radiologists. In 9 patients (9/21, 43%) the CPAM subtype scored by the radiologists did not correspond with the subtype given at pathology assessment. No pathogenic mutations and no copy number variations of the DICER1 gene were found in the DNA extracted from CPAM tissue (0/28). CONCLUSIONS: Our findings suggest that the initial CPAM diagnoses were correct. These findings should be validated through larger studies to draw conclusions regarding whether systematic DICER1 genetic testing is required in children with a pathological confirmed diagnosis of CPAM or not. LEVEL OF EVIDENCE: Level IV.


Assuntos
Malformação Adenomatoide Cística Congênita do Pulmão , Blastoma Pulmonar , Criança , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Estudos de Coortes , Estudos Retrospectivos , Blastoma Pulmonar/diagnóstico , Blastoma Pulmonar/genética , Blastoma Pulmonar/cirurgia , Malformação Adenomatoide Cística Congênita do Pulmão/diagnóstico por imagem , Malformação Adenomatoide Cística Congênita do Pulmão/genética , Malformação Adenomatoide Cística Congênita do Pulmão/cirurgia , DNA , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
20.
Nucleic Acids Res ; 52(1): 420-430, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994727

RESUMO

MicroRNAs (miRNAs) are important regulators of genes expression. Their levels are precisely controlled through modulating the activity of the microprocesser complex (MC). Here, we report that JANUS, a homology of the conserved U2 snRNP assembly factor in yeast and human, is required for miRNA accumulation. JANUS associates with MC components Dicer-like 1 (DCL1) and SERRATE (SE) and directly binds the stem-loop of pri-miRNAs. In a hypomorphic janus mutant, the activity of DCL1, the numbers of MC, and the interaction of primary miRNA transcript (pri-miRNAs) with MC are reduced. These data suggest that JANUS promotes the assembly and activity of MC through its interaction with MC and/or pri-miRNAs. In addition, JANUS modulates the transcription of some pri-miRNAs as it binds the promoter of pri-miRNAs and facilitates Pol II occupancy of at their promoters. Moreover, global splicing defects are detected in janus. Taken together, our study reveals a novel role of a conserved splicing factor in miRNA biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Spliceossomos/metabolismo , Splicing de RNA , Processamento Pós-Transcricional do RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...